Ciencia1.com - Ciencia y Tecnología - Ciencia, tecnología, educación y Libertad. Noticias y artículos de ciencia y tecnología, videos e imágenes, blogs de Ciencia y tecnología, directorio y enlaces. Recursos, reportajes, guas, biografías y notas de ciencia y tecnología
Directorio|Noticias|Artículos|Videos|Imágenes|Blog|Libros|Exposiciones    
Traducir/translate:






Artículos | Formales | Matemáticas

La belleza de los fractales se pone al servicio de la investigación

Por Joan Carles Ambroso

Un fractal es un patrón geométrico repetitivo que se puede encontrar en la naturaleza. Una definición corta para una realidad difícil de entender.

Publicado: Viernes, 2/5/2008 - 11:25  | 5317 visitas.

Imagen de una estructura fractal. Foto: El país
Imagen de una estructura fractal. Foto: El país
Imagen: Agencias / Internet
Bookmark and Share

Tamaño: Letras NormalesLetras MedianasLetras Grandes

Casi tres décadas después de que el matemático Benoit Mandelbrot acuñara el término, todavía se desconoce mucho de su funcionamiento. Hace unos años, estaban de moda. Ahora parece que pasen de puntillas por los medios de comunicación.

"La investigación en fractales es un gran campo de las matemáticas conocido como sistemas dinámicos y la teoría del caos, por tanto, surge en cualquier ámbito de la ciencia, desde la biología a la química o la ingeniería. Se ha progresado en el conocimiento, pero dado que los fractales se encuentran en tantos campos, hay mucho que hacer", dice el matemático Robert Devaney, de la Universidad de Boston, que ha impartido una conferencia en Barcelona, invitado por la Obra Social La Caixa.

"En la mayoría de campos científicos, en la ingeniería, todo el mundo pensaba que todo debía ser previsible y que, por ejemplo, una reacción química no podía tener un comportamiento caótico", dice Devaney.

Uno de los ámbitos en los que se ha pensado aplicar la teoría de los fractales es la meteorología. ¿Por qué es tan complicado predecir el tiempo a medio plazo, a partir de tres a cinco días? "Es necesario entender cómo funciona cada molécula del aire, es imposible, y por tanto los científicos intentan realizar predicciones más simples, con fractales, que puedan ayudar a entender qué es lo que está pasando en una situación meteorológica". Reconoce Devaney que los investigadores aún trabajan en los fractales más simples, en los conjuntos de Mandelbrot, "que son muy bellos". "Pero si aún no los entendemos bien, ¿cómo podemos predecir el tiempo, que se mueve en variables infinitas? El camino es muy largo", añade.

El conjunto de Mandelbrot se basa en unas expresiones matemáticas simples (x2

+c) que producen hermosas y complicadas imágenes, cada una de ellas con significados matemáticos propios. El problema es que sólo es posible entender completamente esa ecuación si el límite del conjunto de Mandelbrot está localmente conectado, y hasta ahora nadie sabe si esto es cierto.

Los fractales pueden funcionar bien en biología, para analizar los tumores, dicen los expertos: "Si las células cancerosas son benignas, entonces el fractal es muy redondo; pero si el cáncer es maligno, si se extiende, el fractal será diferente. Y tenemos herramientas que miden cuál será la dimensión fractal del conjunto y determinan si el cáncer hace metástasis. Por tanto, los fractales son una herramienta matemática de la medicina", explica. Devaney participa en algunas reuniones mensuales que hacen en Boston un equipo de biomédicos, discuten sobre el caos y los fractales y cómo pueden incidir éstos en la medicina.

En España también hay varias iniciativas empresariales que utilizan los fractales en el desarrollo de productos: por ejemplo, una empresa nacida en la Universidad Politécnica de Cataluña ha creado unas antenas fractales capaces de enlazar señales de varias bandas de telecomunicaciones simultáneamente.

Publicado originalmente en El País (España)

Categorías

» Agregar Enlace
Álgebra Análisis Numérico Biología Matemática Bitácoras Cálculo
Caos Diccionarios Ecuaciones Educación y Formación Estadística
Etnomatemáticas Geometría Institutos Investigación Juegos
Matemática Aplicada Matemáticos Medios Métodos Numéricos Metrología
Organizaciones Probabilidad Problemas Seguridad y Criptografía Sistemas Dinámicos
Software Tutoriales Visualización

Enlaces a sitios

¿Dónde hay Matemática?
El Blog de Ciencia Vista Desde el Ámbito Matemático
Idioma: Español / Spanish; Castilian
Aula de Matemática
Animate a curiosear y ser parte del mundo de las matemáticas
Idioma: Español / Spanish; Castilian
Bernoulli Trials
considers the random process named after James Bernoulli. Includes binomial, geometric, and multinomial distribution.
Idioma: English / English
Coolmath.com
features puzzles, fractals, games, lessons, calculators, and more.
Idioma: English / English
El Paraíso de las Matemáticas
Una página dedicada al fascinante universo de las Matemáticas. Aquí encontrarás apuntes, ejercicios, exámenes, juegos, enlaces, historia, etc. Todo este material está muy orientado para la enseñanza media y superior.
Idioma: Español / Spanish; Castilian
El Prisma
Apuntes de matemática, álgebra, álgebra booleana, Álgebra Conmutativa, ejercicios, etc
Idioma: Español / Spanish; Castilian
Free Math Help.com
provides help to students learning algebra, geometry, calculus, and more. Site offers lessons, games, calculators, and other tools.
Idioma: English / English
Goudreau Museum of Mathematics in Art and Science
seeks to promote and encourage interest in mathematics for everyone. Offers hands-on exhibits and workshops for all age groups.
Idioma: English / English
Greek Alphabet
table listing all of the letters, upper-case and lower-case, with their names and pronunciations, and emphasis on their use in mathematics.
Idioma: English / English
Interactive Mathematics Miscellany and Puzzles
games, puzzles, proofs, facts, and other resources.
Idioma: English / English


Artículos



Imágenes

 


Videos

 


Noticias


Entradas


Libros

 



Home Atrás Arriba


Estamos en:
 Blogalaxia
 Directory of Science Blogs
 

 
Ciencia1.com:
2022 Ciencia1.com - Ciencia y Tecnología. Permitida la reproducción siempre que se señale la fuente y enlace correspondiente a cada material info@ciencia1.com